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Introduction and motivation

Minimum uncertainty 
estimates of concentration:

Transport 
model

t = 1
t = 2

t = T . . .. . .

Fluxes:

Flux 
model

Retrieval 
algorithm

True fluxes: 

t = 1

t = 2

t = T

. . .

. . .

t = 1

t = 2

t = T

. . .
. . .

Inferred fluxes: 

Inferrence

Hypothesis 
testings̃(x1, x2, t)

CO2 
concentrations:

t = 1

t = 2

t = T

...
...

x̃(u1, u2, u3, t)

True CO2 
concentrations:

t = 1

t = 2

t = T

. . .

. . .

x(u, t)
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Data fusion:
Produce single data set of optimal estimates 
of concentration at specified resolution along 
with uncertainties.

Goal:
Understand the processes that control flux of CO2 between the 
ocean/land and the atmosphere.

Strategy:
Experiment with flux model (and transport model) to make modeled 
concentrations agree with observations of concentrations, or 
produce fluxes that agree with inferred fluxes. 
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Hypothesis 
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Introduction and motivation

I The goal of data fusion is to infer the values that make up a time-evolving spatial field
from heterogeneous, noisy observations collected by multiple instruments.

I “Infer" = estimate the true value at any (or all) desired locations and times. Typically,
this means on some grid at some pre-specified resolution.

I “Heterogeneous" = different footprints and sampling patterns.

I “Noisy" = different biases, measurement error variances, and missingness patterns.

I Exploit covariances in space, time, and among variables to make estimates with
minimum uncertainty.
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Introduction and motivation

Example: AIRS (circles) and OCO-2 (strips) synthetic data for a single time point:

I AIRS footprints correspond to actual observed locations on January 1-3, 2006.

I OCO-2 footprints correspond to all possible observation locations (no filtering) for a
single 3-day period (which one?).

I AIRS footprints = 90 km diameter. OCO-2 footprints ≈ 1 km footprints (strip =
4-across).
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Introduction and motivation

“True" (synthetic) field at at single time point:

I Find the estimate of the field that minimizes the uncertainty (estimate is unbiased and
has minimum variance) by using all the OCO-2 and AIRS footprints to make estimates
at all locations (and times!).
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Introduction and motivation

Altitude 1

Altitude 3

Altitude 2

Multivariate data fusion: estimate vector-valued quantities, e.g., vertical profiles of CO2
mole-fraction.
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Introduction and motivation

Altitude 3

Altitude 2

Altitude 1

I Find the minimum uncertainty estimate of the multivariate field using all the OCO-2 and
AIRS observed profiles to make estimates at all locations, altitudes, and times.
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Fusing synthetic AIRS and OCO-2 profiles

Fuse one year of synthetic AIRS and OCO-2 five-altitude profiles:

Downscale 
to 30 km 

hexagonal 
grids

One year of daily, 
global PCTM at 5 

altitudes
(1 x 1.25 degree)

Create 
footprints: 

AIRS = 90 km,
OCO-2 = 1 km

Perform data 
fusion, 

estimate field 
at 30 km

5-D estimates 
and their

covariance 
matrices

Partition into 3-
day time blocks, 

create 3-day 
average maps 

Agreement?

Enjoy watching movie
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Fusing synthetic AIRS and OCO-2 profiles

Fused estimate, near surface CO2 mole-fraction (ppm):

Click me.
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level-1-fused-movie.mov
Media File (video/quicktime)



Mathematical/probabilistic framework
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Domain tessellated 
into hexagonal BAU’s

I Partition of Earth’s surface into ND (D is for
“domain"), small hexagonal basic areal units
(BAU’s; 30 km in our application); the same at
all time steps.

I BAU’s indexed by s=lat/lon of their centers.

I Partition time into three-day blocks (basic time
unit, BTU), indexed by t .

I At each BAU-BTU combination, there is a true
but not directly observed vertical profile of CO2
mole-fraction,

Y(s, t) = (Y (s, t, 1), . . . ,Y (s, t,NH ))
′
,

where NH = number of altitudes.
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Mathematical/probabilistic framework

Geophysical field:
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Mathematical/probabilistic framework

Observations are the averages of BAU values within instrument footprints, plus footprint-level
measurement error.

Z(1)(B1it) =
1
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X
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.
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Mathematical/probabilistic framework

I Zt is the vector of all “noisy" observations (measurement and aggregation error).

I Yt is the vector of all unknown (uncertain and not directly observed) values of the high-resolution
spatial field.

I We want to estimate Yt given Zt .

Yt

Zt

Yt

Zt

Yt

Zt zt

P(Yt |Zt = zt)

I The minimum uncertainty (unbiased, minimum variance) estimate of Yt given the observed data,
Zt , is E(Yt |Zt ). The uncertainty is var(Yt |Zt ). (Expected value and covariance matrix of the
posterior distribution of Yt given Zt .)
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Modeling and exploiting spatial covariance

Strategy: break Yt into pieces, estimate pieces separately.

µt ⌫t ⇠t

Yt

+ +

trend small-scale variation fine-scale variation

⌫t = S ⌘t

ND ⇥ 1 ND ⇥ r r ⇥ 1

S = matrix of spatial basis functions

⌘t = coe�cients

The field Yt is the super-position of three independent components: the trend, µt , the small-scale
variation, ν t , and the fine-scale variation, ξt . Write

Yt = µt + ν t + ξt , and E(Yt |Zt ) = E(µt |Zt ) + S E(ηt |Zt ) + E(ξt |Zt ),

cov(Yt |Zt ) = cov(µt |Zt ) + S cov(ηt |Zt ) S′ + cov(ξt |Zt ).
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Modeling and exploiting spatial covariance

Estimate
trend

Form obs 
vector

Estimate 
prior of

 ⌘t

µt

Zt

Estimate 
posterior 
⌘t |Zt

Estimate
fine-scale
⇠t

Compute 
posterior
Yt |Zt
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Modeling and exploiting spatial covariance

Estimate
trend

Form obs 
vector

Estimate 
prior of

 ⌘t

µt
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matrix inversion is  ⌫t = S⌘t =)
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⌘
r2
⌘
.

Analytical expressions for                 
and                    require inversion 
of               , an    
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O
✓⇣
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(2)
t

⌘3
◆
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Modeling and exploiting temporal covariance

Apply Kalman Smoother to ηt (Nguyen et al., 2013):

I Model the temporal evolution of ηt as an auto-regressive process:

ηt+1 = Hηt + ζt , ζt ∼ N(0,U),

where H is the “propagator" matrix, and ζt is the “innovation" matrix.

I Estimate H and U from the observations.

I Forward filtering: for each time block (BTU) t = 1, . . . ,T , obtain maximum likelihood
estimates (via the EM algorithm) of the parameters of posterior distribution of ηt .

I Backward smoothing: for each time block, filter backwards in time so that the estimates
are based on all data from all time blocks.
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Modeling and exploiting temporal covariance

Estimate 
expected

values and 
covariance 
matrices of 

Z1 Zt�1 Zt

Estimate 
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cov(Yt�1|Z = z)

E(Yt|Z = z),

cov(Yt|Z = z)

z = (z1, . . . , zT )
0
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Modeling and exploiting temporal covariance
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Fusing synthetic AIRS and OCO-2 profiles

Fuse one year of synthetic AIRS and OCO-2 five-altitude profiles:

I Synthetic truth field (five altitudes) created by downscaling output of the Parameterized
Chemistry Transport Model (PCTM).

I 365 daily model runs at 1◦ × 1.25◦ resolution.

I Downscaled to 30 km resolution using conditional simulation (Stough et al., 2014).

I Synthetic AIRS footprints (90 km) obtained by averaging 30 km hexagons belonging to
actual AIRS footprints for corresponding day of 2006 (cloud-screened).

I Synthetic OCO-2 footprints (≈ 1 km) obtained as value of 30 km hexagon to which
footprint center belongs for representative orbit tracks (not cloud-screened).

I No measurement error (yet).
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Fusing synthetic AIRS and OCO-2 profiles

Fuse one year of synthetic AIRS and OCO-2 five-altitude profiles:

I Time aggregated into three-day blocks, Kalman smoother run on monthly “windows"
(ten three-day blocks per month). Propagator matrix and innovation vector
re-estimated for each window.

I About 40,000 AIRS and 200,000 OCO-2 synthetic observations per three-day block.

I We used r ≈ 1800 basis centers in three dimensions (300 horizontal × 6 vertical at
each horizontal location).

I Estimated five-altitude profile and their covariance matrices produced at 30 km BAU
resolution globally for 120, three-day time blocks covering one (synthetic) year.

I Timing: fusing one month (five altitudes) in ten, three-day blocks takes about 36 hours
on a single Intel Xeon 2.0 Ghz processor.
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How well did we do?

Fuse one year of synthetic AIRS and OCO-2 five-altitude profiles:

Downscale 
to 30 km 

hexagonal 
grids

One year of daily, 
global PCTM at 5 

altitudes
(1 x 1.25 degree)

Create 
footprints: 

AIRS = 90 km,
OCO-2 = 1 km

Perform data 
fusion, 

estimate field 
at 30 km

5-D estimates 
and their

covariance 
matrices

Partition into 3-
day time blocks, 

create 3-day 
average maps 

Proportion of 
time truth is 

inside 95% CI

Simulation study

Repeat on 100 statistical realizations of the downscaled field:

Preliminary result: over all 5 
altitudes and all spatial BAU’s, 
proportion = 0.84.
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Summary and conclusions

I Spatial (and inter-variable) dependence captured by a combination of basis functions
and a low-dimensional hidden state vector. Estimation performed in low-dimensional
space. No assumptions of isotropy or stationarity required.

I Temporal dependence via a Kalman smoother on the hidden state.

I Corrects for change of support (heterogenous footprints) and different measurement
error characteristics.

I Computationally feasible for very large remote sensing data sets.

I No instrument observes everywhere all the time, or perfectly. Here we leverage
complementary strengths of multiple instruments to increase coverage and minimize
uncertainty.

24



Summary and conclusions

I Still work to do in evaluating results through simulation studies.

I Still work to do on the selection of basis functions and interplay between them, the
trend, and the fine-scale term.

I Preparing to apply to actual AIRS and OCO-2 data early next year.

I Journal paper in preparation.
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Spatial basis functions

2-D cartoon example, 10 locations, 4 basis centers:

+ = basis center,

= spatial location, color = value

0.0 0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

0 1

Spatial structure given by cov(⌫t).

⌫t = (⌫(s1, t), . . . , ⌫(s10, t))
0

10⇥ 10
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Spatial basis functions

2-D cartoon example, 10 locations, 4 basis centers:

0.0 0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

0 1

Basis function for each location is a decaying 
function of its distance to the four basis centers:

s1

d11

d13

d14

S(s1) = (1/d11, 1/d12, 1/d13, 1/d14) .

d12

+ = basis center,

= spatial location, color = value
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Spatial basis functions

2-D cartoon example, 10 locations, 4 basis centers:
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0 1

Basis function matrix:

s1

d11

d13

d14
d12

+ = basis center,

= spatial location, color = value

⌫t

Low-dimensional representation:
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0
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1
CCCA

0
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⌘1t
⌘2t
⌘3t
⌘4t

1
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cov(⌫t) = cov(S⌘t) = S cov(⌘t)S
0

4⇥ 4

S =

0
BBB@

S(s1)

S(s2)
...

S(s10)

1
CCCA =

0
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1/d11 1/d12 1/d13 1/d14
1/d21 1/d22 1/d23 1/d24
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Spatial basis functions

2-D cartoon example, 10 locations, 4 basis centers:

0.0 0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

0 1

⌫̂t = S ⌘̂t .

+ = basis center,

= spatial location, color = value

0.0 0.5 1.0 1.5 2.0
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2.
0

0 1

+ = basis center,

= spatial location, color = value

⌫t
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Modeling and exploiting spatial covariance

I Have P(Zt |ηt ), want P(ηt |Zt ). Use Bayes’ Theorem (P(B|A) ∝ P(A|B)P(B).)

Z
(1)
t = µ

(1)
t + S(1)⌘

(1)
t + ⇠

(1)
t + ✏

(1)
t

Y(s, t) = µ(s, t) + ⌫(s, t) + ⇠(s, t)

Z
(2)
t = µ

(2)
t + S(2)⌘

(2)
t + ⇠

(2)
t + ✏

(2)
t

 
Z
(1)
t

Z
(2)
t

!
=

 
µ
(1)
t

µ
(2)
t

!
+

 
S
(1)
t 0

0 S
(2)
t

! 
⌘
(1)
t

⌘
(2)
t

!
+

 
⇠
(1)
t

⇠
(2)
t

!
+

 
✏
(1)
t

✏
(2)
t

!
=)

=)

=)

Z(2)(B2jt) =
1

|D \ B2jt |
X

s2B2jt

Y(s, t) + ✏(B2jt)Z(1)(B1it) =
1

|D \ B1it |
X

s2B1it

Y(s, t) + ✏(B1it)

Zt = µt + S⌘t + ⇠t + ✏t

=) =)

I P(ηt |Zt ) ∝ P(Zt |ηt )P(ηt ).
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Vertical basis functions

I In previous work (Nguyen, Katzfuss, Cressie, and Braverman (2012)) we used 446 basis centers
arranged in a multi-resolution configuration with local bisquare decay to capture 2-D spatial
structure in ν t .

I Basis functions for 3-D location(s, h) is S(s, h). It is the Kronecker product of the horizontal basis
function, S(s), and vertical (horizontally varying) basis function τ (s, h):

S(s, h) = S(s)⊗ τ (s, h).

Example:

S(s) =


S1

...
Sr1

 , τ (s, h) =


τ1

...
τr2

 , S(s)⊗ τ (s, h) =



S1τ1
S1τ2

...
S1τr2

...
Sr1τ1
Sr1τ2

...
Sr1τr2



.

I τ (s, h) expands h from one number to a vector of six numbers in a way that depends on location s.
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Modeling and exploiting spatial covariance

The data model relates each instrument footprint observed value to the true process:

Z(k)
t =


Z(k)(Bk1t )

...
Z(k)(B

kN(k)
t t

)

 , Z(k)(Bkit ) = Y(k)(Bkit , t) + ε(Bkit ),

Y(k)(Bkit ) =

 1
|D ∩ Bkit |

∑
s∈|D∩Bkit |

Y(s, t)

 (noiseless spatial aggregate),

=

 1
|D ∩ Bkit |

∑
s∈|D∩Bkit |

µ(k)(s, t) + S(s)ηt + ξ(k)(s, t)

 .
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